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Abstract

To picture matter on the nanoscale scale, a revolutionary imaging technology called coherent x-ray diffractive
imaging uses phase retrieval and nonlinear optimization techniques. By introducing a reduced dimensionality issue,
we are able to observe and quantitatively assess the convergence to local minima and the globally optimum solution
of a well-known phase retrieval approach, Fienup's HIO. Next, we provide extensions to HIO that boost the original

algorithm's convergence to the global optimum.

Introduction

Imaging a sample without the need of optics is
possible using coherent x-ray diffractive imaging
(CXDI) [9]. In the experimental geometry shown in
Fig. 1, monochromatic coherent plane wave x-rays
interact with a sample to form an exit wave p(r) €
Cmxn, wherer € R = {(ru,rv): u€0,...,n-1,v E
0, ..., m—1} denotes a length scale that is the spatial
resolution of the microscope and mn € Z is the
number of complex variables -constituting the
measured exit wave. To do this, we position a
detector in the far field and measure the amount F [],
which is proportional to the squared modulus of the
Fourier transform of the exit wave. The resulting
diffraction pattern, expressed as a function of
frequency, is given by D = |F[] |2 + Rmn +, where | |2
is the squared modulus |a]2 = a a, where is the
complex conjugate and _ is the Hadamard
(component wise) product for any a Cmn. By
measuring the coherent diffraction pattern D Rmn +,
for instance using nonlinear optimization methods,
CXDI hopes to recover the discrete representation of
the exit wave, Cmn. The "phase problem," caused by
x-ray area detectors' inability to measure a whole
complex-valued wave field, is circumvented by this

method. tanl (Im () Re ()) (with the divided
component) is recovered, which is the missing phase.

[Fraunhofer Diffraction Intensity |
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Experiment using CXDI shown in Figure 1. What is
observed is proportional to the squared modulus of
the Fourier transform of the exit wave when
monochromatic coherent plane-wave x-rays interact
with a sample and a detector is situated in the far
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field. The number of pixels in the area detector is
what gives the measurement its mn size. Insightful),
begins with a first estimate for the exit wave and
refines the current exit wave iteration using
information gathered from the experiment. In
addition to the observed diffraction intensities D, this
data also contains information about the sample
itself, such as the support of the sample, which
characterizes an area in the space R in which the
sample is known not to exist. Since its first
implementation, CXDI has been used to a wide
variety of sample types and experimental settings,
where it has been proven to produce a novel exit
wave under certain conditions [1, 3, 11, 9]. When the
recovered exit wave fulfills restrictions specified by,
then the issue of CXDI may be seen as a feasibility
problem [2], locate some S M, (1).

the collection of spatial indices S R that corresponds
to the sample's backing. The intensity of the observed
coherent diffraction pattern serves as the basis for the
measurement constraint set M, which is defined as

When the multiplication _ and division + are
component wise: .
We may provide projection operators for both sets S

and M.

The alternating projection approach, often known as
"error reduction" (ER) in the phase retrieval
community [5] is one of the simplest algorithms for
roughly solving (1).

See Figure 2a for an illustration of how the ER
algorithm continually moves back and forth between
the sample space and the diffraction space by
applying the measurement projection M and the
support projection S. Since ER may be thought of as
the problem's expected sharpest decline,

Trajectory #1 in Fig. 2b shows that it may become
stuck at stationary sites that do not solve (1). Our
numerical findings confirm that the initial prediction
for the exit wave is crucial to the final outcome of the
convergence process.(0).  Although numerous
approaches have been devised to break through this
impasse, the "hybrid input-output"” (HIO) approach
proposed by Fienup [5] is now the workhorse of
experimentalists. By adjusting the relaxation
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parameter R, HIO may be seen as a variant of the
Douglas-Rachford method for nonconvex problems

[2]:

where Sc = Cmn: / SO and S + Sc = 1, with 1 Rmn
signifying the matrix containing all ones; Sc is an
orthogonal binary operator to S. Numerical findings
reveal that HIO is superior than ER at preventing
stagnation at nonglobal solutions. However, it will be
shown that more resilient algorithms do exist. This
paper makes the following contributions. To improve
HIO's efficacy and robustness while escaping from
nonglobal solutions, we investigate extended
formulations of HIO as a saddle-point optimization
problem and provide optimization-based ways to do
so. We present a technique for visualizing a low-
dimensional issue such that one may get a feel for the
saddle-point target and how an algorithm can move
across the space to reach it. We next have a look at
the HIO variations that have been created using this
method.

—
T
ms ™
Sample F~1| Measurement Constrsnt et M
Constraint Constraint
¢ Trajectory #1

As shown in Figure 2(a), regular CXDI algorithms
use restrictions on both the sample and diffraction-
space representations, as well as the Fourier and
inverse Fourier transforms. (b) The effectiveness of
CXDI algorithms is sensitive to the value of (0), with
various initializations yielding distinct trajectories.

HIO and the Optimization of the Saddle Point

As a heuristic for locating a Nash equilibrium (for an
example, see [4]), the HIO technique in ( 5 ) may be
thought of.

min, .5 L(ps+ ps)
max,, cse  L{ps +ps),
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Where )
p, = mgp and p, = Tgep = (1 — mg)p

Represent an orthogonal decomposition of

TR TR
L

The objective function

] y
L:C™n 4R
Is given by

2
msp— pllp-

L(p) = e(p) —€5(p) = |mmp — plF — |

In this game, one player seeks to minimize the
objective by controlling p inside the support, while
The second player seeks to maximize the objective
by controlling p outside the support. Nash
equilibrium for (6) correspond to parti'cular saddle
points of the function f (= Ps) = L(ps + ps).
this fact motivates algorithmic approaches that solve
related saddle-point problems [7].

Two-Dimensional Search and HIO
Generalizations

Using Wirtinger calculus

MO0 —_ '!I_r —_ l Ej y Ej .
[“h{'“ ?r” T odp _?i-.rfﬂci,u. T !Ei]THI:{J])'
see [10]), we compute the gradient of (7) with respect

vpﬂ(lﬂ:] = (ﬂ-S - FMIIJ”.

This (complex-valued) gradient can be decomposed
into parts inside and outside the support, respectively:

0, =15V 5L(p) = (15 — msmMm)p

and
0y = w5V iL(p) = —ms=pqp,
where we have used the fact that
Tsems = 0, msTs = Ts,
and where
{] E?I‘E TR
S
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i the matrix containing all zeros. Taking a step along
the steepest descent direction inside the support and a
step along the steepest ascent direction outside the
support would thus correspond to the combined
direction

L

(—8..8.).

If we allow for unequal steplengths (a, f) along these
respective orthogonal directions, we obtain the first-
order update

p[b“: = pm - mdim + ,ii'é‘i*: =(1- e'.r]pm + e'.r(ﬁsw:],dm

where we have used the fact that
e - Tge = 1.

The HIO method of then applies only when = 1. (5).
Going beyond the = 1 situation and considering more
generic values for yields a generalization of the HIO
method, as opposed to utilizing a fixed value drawn
from the normal range of [0.5, 1] as is imposed by
real HIO implementations [5, 7]. Solving the two-
dimensional version of (6) with the same goal in
mind may be used to generate the (, ) values needed
for each iteration of the form (9).

bela, B) = L(p™ — ad™ + g6+,

Using the notation
a

B du and = {l, bs

oaub
we desire (@ 8) such that O, B) =
dave(a,f) = 0 and uate(e, f) 2 0 > daatn(a, B).

One approach is to use a modified Newton method
ming g Prla, 3):

for the problem
‘f-\"j+'. _ ‘f-}lj . |t_jr1r11.i"k'('fl’j‘.‘:jl)j\” rﬁtk[nj j]j] a[kmj i_}]
Bis| B OsaVrl,B5)  —Ogatn(e,B)l] [ Osvnles )]
Where

Opla,f) = Hvr_g[n A ||

Minimization and maximizing with regard to are both
possible given the right choice of second-order
matrix form in (10). For the aim k(, ), a line search
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(for example, with the strong Wolfe conditions) may
be used to find the step length ; a similar technique is
utilized in [7]. Fig. 3 depicts a typical instance of this
procedure.

Optimization of both and by locating a specific
saddle point of k(, ) is seen in Figure 3. Two contour
plots, one for each of the functions k(, ) and k(, ). The
trajectory computed using the modified Newton step
in (10) is superimposed on both graphs; the green
circle represents the starting position (0, 0), and the
magenta circle represents the ending position (5, 5).
(after 5 iterations).

Quasi-Newton and  Conjugate
Gradient Update Directions

HIO is a specific instance of the bidirectional strategy
mentioned above, but other, more general strategies
for problem resolution are also possible. (6). We now
suggest two such methods that make use of general
directions dk in the wupdate and are based,
respectively, on L-BFGS and conjugate gradient
(CG) direction steps.

p(k—lj — pik] 1 {.t*.{fLM + .Skfigk)- kE=0,1,...,

instead of the gradient directions prescribed by (8)
and (9). In all the results that follow, we initialize

||:iLm = —5,5“3' and til.[j] = }E[j].

In most experimental contexts, the number of
complex-valued variables in a phase retrieval issue is
on the order of mn = 106. In order to employ the
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dense Hessian (with 1012 complex-valued variables)
in quasi-Newton techniques, it is too costly in terms
of storage to compute an approximation of the
Hessian. To get around this, we turn to L-BFGS [8]
and other limited-memory approaches. Algorithm 1
presents our L-BFGS approach, which is based on
recent work by [10].

For the sake of explanation, we'll assume that you're
familiar with how vectors operate and that the
numbers skl1, ykl, and gk are all column vectors in
the vectorized form, Cmn. With the right projection
(S or Sc), Algorithm 1 may be utilized either within
(A = S) or outside (A = Sc) the support. Our
implementation remembers the previous p = 5
changes. In the first algorithm, the desired minimum
or maximum is determined by the inertia of the quasi-
Newton Hessian Bk. By appropriately scaling the
original quasi-Newton matrix (in our studies, we
utilize the identity matrix), we are able to obtain the
desired orientation. The conditional

(ye—1,8.—1) Re| vil sk_1 ]
lare—1|? Re[ i (v 1]

j=k-1

It g = T30 = g1 5= ) i P21

Output: d¥) =~ =-B; 7,/

dtg
for j=k-1,...max{0.k - p} do
g;jé{:(yj\sj)]']: ytnlsd ded-ny;
end fo
i {,Yk-llbl:l)d
et

for j=max{0.k-p},....k-1do
Ceplydy  dedtl-(s
end for
If (12) in the first algorithm, where H is the ermitian
transposition, is positive, the quasi-Newton step is
returned in the downbhill direction, and in the uphill

direction if (12) is negative. We also take into
account nonlinear CG directions of the kind

= g = g
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With 0 and 4, defined from (8). Several
Iternatives for the CG parameter y exist (see, e.g.,

[6]), and we consider the seven variants listed in
Table 1. We employ separate updates for the

Variables
(4%

18

(k)

p. and p,, so that ~.

determined by using
L3

and

(k) (k)

dp =da (de =ds7).

These two sets of choices are made based on whether
we are updating in S (minimizing) or in Sc
(maximizing).

Numerical Experiments with HIO
Variants

We now examine the effectiveness of the methods
escribed in Sec. 2 in terms of their robustness for
solving the low-dimensional problem whose exit
wave

pE Rlﬁx]fﬁ
and diffraction pattern -

Dc R]ﬁ}-&lfi
+ are shown in Figs. 4a and 4b, respectively. The
exit wave is real-valued and consists of three pixels,
plra) = 0,05, p(re) = 0.8, and p(r.) = 0.125
arranged in an upside-down-L shape. The remaining
pixels are zero, and the correct support

| S = {ra.rp,7c}

ISSN: 0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

_lg)
o
(gest 1)

Fltcher-Reeves (FR): HQHJU
HgaH

Hostemes-Stiefel (HS): 1 (nH LmS y (LS): =T
d, n} ‘ (-1,

]
Dat- Yuan (DY): «:% Conjugate Descnt (CD): [|E(;L+1|}

1
<yk_2(n.%gk+l>

(dy 1

Polak-Ribiere (PR):

Hager-Thang (HI): 7=

Table 1: CG parameter expressions for the algorithms
considered .we define
Y = Bky1 — Bk
al|?* = (a,a),

and the inner product

(a,b) = eTRe[a@b]e,

where e is a standard vector consisting only of ones.
For the sake of illustration, we will pretend that rc is
already known; this will leave us with a problem that
has 255 complex variable dimensions, with the only
two nonzero values being

cplrg) and p(ry),

a scenario that was conceived after reading [7], which
had a comparable synthetic dilemma. Because of this
dilemma, we are able to see the solution in a
subspace that only has two dimensions.

 Ap(ra), plrs),
plr.) = 0125, p. = 0) where L(p)

reduces to the the modulus objective function

e R ,
emle) = Tmpe — Pl 5
depending on the values of ra and rb; see Fig. 4c. The
input exit wave (with (ra) = 0.05 and (rb) = 0.8)
corresponds to the global minimum labeled mG of
this measure. Due to the fact that phase retrieval is
often insensitive to global phase changes in the exit
wave (i.e.,

\F[pl| = |F [pei®r]

for a fixed 0 R phase difference. At the m1 minimum,
the input exit wave ((ra) = 0.05 and (rb) = 0.8)
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exhibits a negative phase shift of 0 =. Since the value
of (rc) is known, however, such worldwide phase
shifts are not comparable in our issue. Because of
symmetry in the Fourier transform, the non-global
minima denoted by the labels m2 and m3 appear
when is rotated by 180 degrees. Minimum m2
corresponds to a 180-degree rotation of the exit wave,
and minimum m3 corresponds to a 180-degree
rotation of the exit wave. Knowing the value of
breaks the symmetry of the Fourier transform,
making the m2 and m3 minima non-global in the
same way that ml is.(rc). Based on this issue
formulation, we offer a way of representing the exit
wave retrieved as a function of the initial conditions
of the process ((0)(ra), (0)(rb)). Starting from the box
[1.5, 1] with increments of 0.15, we evaluate 441
initial values ((0)(ra), (0)(rb))..5]2. From this chosen
initial point, we next check to see which of the 2 M
minima (mG, m1, m2, or m3) in the two-dimensional
space ((ra), (rb)) the technique converges to. Fig. 4d
depicts such an illustration for the ER technique from
(4). The ER approach is projected steepest descent;
therefore we anticipate returning to the inima that is
geographically closest to the origin. The derived
minimum is highlighted in green at the origin in Fig.
4d, confirming the validity of this finding. With
careful attention paid to maintaining constant
experimental circumstances, we do these 441 runs
again using an implementation of each of the
provided techniques. For our initial (0), everything is
set to zero except for the predetermined values for ra
and rb and the constant rc. Each of the new variations
updates (1) in the same way as in Sec. 2.1, but they
start with different beginning search directions: d(0) s
=(0) s and d(0) s =(0) s. (11). To determine the next
set of search directions d, we apply the L-BFGS or
CG update to calculate L((k)).(k). After this revision
is complete, we'll find the optimum (k, k) and revise
k+1. After computing d(k) at each iteration, we check
the sign on the directional derivatives in S and Sc by
computing Re[ [ (k) _ dk)](r)]; if we have a
positive directional derivative when updating in S
(going uphill when we should be going down) or a
negative directional derivative when updating in Sc
(going downhill when we should be going up), we
reset the offending update to be the standard HIO
update Only five rounds of the saddle-point
optimization method are permitted for identifying
optimum (k, k). (10). Using the optimum (, ) and
search directions inside and outside the support
provided in (8), we see in Fig. 4e that the HIO
approach from (9) can escape the local minima m2
and m3, but it is vulnerable to stagnation in the
nonglobal minimum m1. About 75% of the time, out
of a total of 441 possible initializations, HIO with
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optimum (, ) can locate the global minimum mG.
Results for illustrative combinations of CG and L-
BFGS within and outside the support with (, ) are
shown in Fig. 4f-i. Some combinations of CG search
directions and DY wupdate (Table 1) within the
support and FR update (Table 1) outside the support
are obvious, as shown in Fig. 4f.

Figure 4: (a) The exit wave p(r) €R16x16 used. It is
assumed that the bottom pixel (rc) is known but the
top two pixels (ra, rb) are not. The diffraction pattern
for the exit wave in (b) (a). This section demonstrates
how to calculate the modulus objective function 2
M() = M 2 F using brute force, given that there are
only two unknowns ((ra), (rb)). (d) Attempting to
solve the phase issue by using the local minimizer ER
(projected steepest descent); depending on the initial
condition, we will arrive at the nearest of the four
minima mG, m1, m2, and m3. Saddle-point
optimization is used to converge to these minima,
yielding the best (, ) and (e) canonical HIO
directions. (8). Using (f) Dai-Yuan in S and (g)
Fletcher-Reeves in Sc are two examples of when CG
update paths lead to a poorer result. Hager-Zhang in
S and Polak Ribi'ere in Sc significantly enhance the
outcome in (e). (i) We are able to locate mG from
practically any initial location (99% success rate) by
using L-BFGS in S and Hestenes-Steifel in Sc.
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Using combinations of the standard HIO directions
(Figure 5), the CG direction updates (Table 1), and
the L-BFGS direction updates (Figure 5), we can see
what percentage of initial points had their global
inimum mG regained. (Algorithm 1). (a) Using the
optimum (, ) in conjunction with direction updates
outside the support, as opposed to using regular HIO
direction updates from (9). Comparison of Fletcher-
Reeves (FR), Polak-Ribi'ere (PR), Hestenes-Steifel
(HS), Liu-Storey (LS), Dai-Yuan (DY), Conjugate
Descent (CD), Hager-Zhang (HZ), and L-BFGS (i)
direction updates within the support and outside the
support. The red dotted line represents the proportion
of times the global minimum was obtained when
standard HIO was used inside and outside of the
support in addition to the optimum (, ). There are
major drawbacks to CG updates both within and
outside the support. With the LS update within the
support and the DY update outside the support, as
shown in Fig. 4g, the negative impacts of using the
CG update parameters are mitigated compared to Fig.
4f. Using the L-BFGS direction update from (1)
inside the support and the HS update from Table 1
outside the support, as shown in Fig. 4h, and the HZ
update inside the support and the PR update outside
the support, as shown in Fig. 4i, are two examples of
CG and L-BFGS wupdate combinations that
significantly improve the algorithm's beneficial
ability to converge to the global solution. Results for
the 81 wversions generated by coupling various
methods for both internal and external updates are
summarized in Fig. 5. The charts reveal what
percentage of the interval's 441 beginning locations
provide the global minimum mG. These findings
allow us to evaluate whether or not combining L-
BFGS with CG direction updates in S and Sc yields
more stable performance. When compared to the
typical HIO update in Fig. 5a, the CG approaches of
PR, LS, and DY in Figs. 5c, e, and f, respectively,
seem to exhibit comparable to slightly poorer
behavior. When applied to S, the CG technique of FR

| ¥ LE}

method use
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in Fig. 5b seems to have solely negative impacts on
convergence to mG, and when used to Sc, it appears
to have negative effects in general. As can be shown
in Fig. 5g, the CG technique of CD produces negative
consequences in S but no real impact in Sc. All three
CG techniques shown in Fig. 5d—5i—the HZ and HS
approaches shown in Fig. 5h and the L-BFGS
technique shown in Fig. Si—have positive outcomes.
Some of these variations, when started from almost
any of the 441 possible sites, converge to the global
minimum.

Outlook

Using nonlinear conjugate gradient and limited-
memory quasi-Newton updates with an optimum
weighting of these updates, we have investigated the
behavior of a well-liked phase retrieval lgorithm,
Fienup's HIO, while updating an exit wave both
within and outside the support. By analyzing a low-
dimensional, synthetic issue, we were able to assess
the approaches' resilience and see how these
generalized updates might either aid or hinder
convergence to an optimum solution. According to
our findings, an algorithm's capability to recover the
specified exit wave is greatly enhanced by using a
mix of CG and L-BFGS updates. We have also
shown that some combinations are not resilient and
should be avoided.

Experimenters that use HIO often employ several
initial speculations for the exit wave, perform
multiple independent trials, and then compare the
recovered exit waves. The resulting solutions are
almost always novel, and the determination of what
constitutes a "good" solution is frequently left to
qualitative rather than quantitative measures. We
expect that experimentalists' confidence in reducing
the number of beginning points evaluated will grow
upon applying the generalized modifications
described here.
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