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Abstract 
 

To picture matter on the nanoscale scale, a revolutionary imaging technology called coherent x-ray diffractive 

imaging uses phase retrieval and nonlinear optimization techniques. By introducing a reduced dimensionality issue, 

we are able to observe and quantitatively assess the convergence to local minima and the globally optimum solution 

of a well-known phase retrieval approach, Fienup's HIO. Next, we provide extensions to HIO that boost the original 

algorithm's convergence to the global optimum. 

 

 Introduction 
 

Imaging a sample without the need of optics is 

possible using coherent x-ray diffractive imaging 

(CXDI) [9]. In the experimental geometry shown in 

Fig. 1, monochromatic coherent plane wave x-rays 

interact with a sample to form an exit wave ρ(r) ∈ 

Cm×n, where r ∈ R = {(ru, rv): u ∈ 0, . . . , n−1, v ∈ 

0, . . . , m−1} denotes a length scale that is the spatial 

resolution of the microscope and mn ∈ Z is the 

number of complex variables constituting the 

measured exit wave. To do this, we position a 

detector in the far field and measure the amount F [], 

which is proportional to the squared modulus of the 

Fourier transform of the exit wave. The resulting 

diffraction pattern, expressed as a function of 

frequency, is given by D = |F[] |2 + Rmn +, where | |2 

is the squared modulus |a|2 = a_a, where is the 

complex conjugate and _ is the Hadamard 

(component wise) product for any a Cmn. By 

measuring the coherent diffraction pattern D Rmn +, 

for instance using nonlinear optimization methods, 

CXDI hopes to recover the discrete representation of 

the exit wave, Cmn. The "phase problem," caused by 

x-ray area detectors' inability to measure a whole 

complex-valued wave field, is circumvented by this 

method. tan1 (Im () Re ()) (with the divided 

component) is recovered, which is the missing phase.   

 
 

Experiment using CXDI shown in Figure 1. What is 

observed is proportional to the squared modulus of 

the Fourier transform of the exit wave when 

monochromatic coherent plane-wave x-rays interact 

with a sample and a detector is situated in the far 
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field. The number of pixels in the area detector is 

what gives the measurement its mn size. Insightful), 

begins with a first estimate for the exit wave and 

refines the current exit wave iteration using 

information gathered from the experiment. In 

addition to the observed diffraction intensities D, this 

data also contains information about the sample 

itself, such as the support of the sample, which 

characterizes an area in the space R in which the 

sample is known not to exist. Since its first 

implementation, CXDI has been used to a wide 

variety of sample types and experimental settings, 

where it has been proven to produce a novel exit 

wave under certain conditions [1, 3, 11, 9]. When the 

recovered exit wave fulfills restrictions specified by, 

then the issue of CXDI may be seen as a feasibility 

problem [2], locate some S M, (1).             

  

the collection of spatial indices S R that corresponds 

to the sample's backing. The intensity of the observed 

coherent diffraction pattern serves as the basis for the 

measurement constraint set M, which is defined as 

  

 

When the multiplication _ and division ÷ are 

component wise: . 

We may provide projection operators for both sets S 

and M. 

 

  

 

The alternating projection approach, often known as 

"error reduction" (ER) in the phase retrieval 

community [5] is one of the simplest algorithms for 

roughly solving (1).          

  

 

See Figure 2a for an illustration of how the ER 

algorithm continually moves back and forth between 

the sample space and the diffraction space by 

applying the measurement projection M and the 

support projection S. Since ER may be thought of as 

the problem's expected sharpest decline,  

 

  

 

Trajectory #1 in Fig. 2b shows that it may become 

stuck at stationary sites that do not solve (1). Our 

numerical findings confirm that the initial prediction 

for the exit wave is crucial to the final outcome of the 

convergence process.(0). Although numerous 

approaches have been devised to break through this 

impasse, the "hybrid input-output" (HIO) approach 

proposed by Fienup [5] is now the workhorse of 

experimentalists. By adjusting the relaxation 

parameter R, HIO may be seen as a variant of the 

Douglas-Rachford method for nonconvex problems 

[2]: 

  

  

 

where Sc = Cmn: / S0 and S + Sc = 1, with 1 Rmn 

signifying the matrix containing all ones; Sc is an 

orthogonal binary operator to S. Numerical findings 

reveal that HIO is superior than ER at preventing 

stagnation at nonglobal solutions. However, it will be 

shown that more resilient algorithms do exist. This 

paper makes the following contributions. To improve 

HIO's efficacy and robustness while escaping from 

nonglobal solutions, we investigate extended 

formulations of HIO as a saddle-point optimization 

problem and provide optimization-based ways to do 

so. We present a technique for visualizing a low-

dimensional issue such that one may get a feel for the 

saddle-point target and how an algorithm can move 

across the space to reach it. We next have a look at 

the HIO variations that have been created using this 

method. 

 
 

As shown in Figure 2(a), regular CXDI algorithms 

use restrictions on both the sample and diffraction-

space representations, as well as the Fourier and 

inverse Fourier transforms. (b) The effectiveness of 

CXDI algorithms is sensitive to the value of (0), with 

various initializations yielding distinct trajectories. 

 

 

 HIO and the Optimization of the Saddle Point 

 

As a heuristic for locating a Nash equilibrium (for an 

example, see [4]), the HIO technique in ( 5 ) may be 

thought of. 
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Where

 
 

Represent an orthogonal decomposition of  

 
 The objective function  

 
 

Is given by                  

 

 
 

In this game, one player seeks to minimize the 

objective by controlling ρ inside the support, while 

The second player seeks to maximize the objective 

by controlling ρ outside the support. Nash 

equilibrium for (6) correspond to particular saddle 

points of the function

this fact motivates algorithmic approaches that solve 

related saddle-point problems [7].  

   

 Two-Dimensional Search and HIO 

Generalizations 
 

Using Wirtinger calculus  

 

 
 

see [10]), we compute the gradient of (7) with respect 

 

. 

 

 This (complex-valued) gradient can be decomposed 

into parts inside and outside the support, respectively: 

  

 
 

and 

 

 
 

where we have used the fact that 

 

 
and where 

s  

i the matrix containing all zeros. Taking a step along 

the steepest descent direction inside the support and a 

step along the steepest ascent direction outside the 

support would thus correspond to the combined 

direction  

 
 

If we allow for unequal steplengths (α, β) along these 

respective orthogonal directions, we obtain the first-

order update   

 
 

where we have used the fact that 

 
The HIO method of then applies only when = 1. (5). 

Going beyond the = 1 situation and considering more 

generic values for yields a generalization of the HIO 

method, as opposed to utilizing a fixed value drawn 

from the normal range of [0.5, 1] as is imposed by 

real HIO implementations [5, 7]. Solving the two-

dimensional version of (6) with the same goal in 

mind may be used to generate the (, ) values needed 

for each iteration of the form (9).   

 

 
  

 

Using the notation  

  

we desire  such that  

 

 
 

One approach is to use a modified Newton method 

for the problem  

 

 

 
 

Where 

 

 
 

Minimization and maximizing with regard to are both 

possible given the right choice of second-order 

matrix form in (10). For the aim k(, ), a line search 
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(for example, with the strong Wolfe conditions) may 

be used to find the step length ; a similar technique is 

utilized in [7]. Fig. 3 depicts a typical instance of this 

procedure. 

 

 

 
 

Optimization of both and by locating a specific 

saddle point of k(, ) is seen in Figure 3. Two contour 

plots, one for each of the functions k(, ) and k(, ). The 

trajectory computed using the modified Newton step 

in (10) is superimposed on both graphs; the green 

circle represents the starting position (0, 0), and the 

magenta circle represents the ending position (5, 5). 

(after 5 iterations). 

Quasi-Newton and Conjugate 

Gradient Update Directions 
 

HIO is a specific instance of the bidirectional strategy 

mentioned above, but other, more general strategies 

for problem resolution are also possible. (6). We now 

suggest two such methods that make use of general 

directions dk in the update and are based, 

respectively, on L-BFGS and conjugate gradient 

(CG) direction steps.    

 
 

instead of the gradient directions prescribed by (8) 

and (9). In all the results that follow, we initialize    

 

 
 

In most experimental contexts, the number of 

complex-valued variables in a phase retrieval issue is 

on the order of mn = 106. In order to employ the 

dense Hessian (with 1012 complex-valued variables) 

in quasi-Newton techniques, it is too costly in terms 

of storage to compute an approximation of the 

Hessian. To get around this, we turn to L-BFGS [8] 

and other limited-memory approaches. Algorithm 1 

presents our L-BFGS approach, which is based on 

recent work by [10]. 

For the sake of explanation, we'll assume that you're 

familiar with how vectors operate and that the 

numbers sk1, yk1, and gk are all column vectors in 

the vectorized form, Cmn. With the right projection 

(S or Sc), Algorithm 1 may be utilized either within 

(A = S) or outside (A = Sc) the support. Our 

implementation remembers the previous p = 5 

changes. In the first algorithm, the desired minimum 

or maximum is determined by the inertia of the quasi-

Newton Hessian Bk. By appropriately scaling the 

original quasi-Newton matrix (in our studies, we 

utilize the identity matrix), we are able to obtain the 

desired orientation. The conditional 

 
 

 
 

If (12) in the first algorithm, where H is the ermitian 

transposition, is positive, the quasi-Newton step is 

returned in the downhill direction, and in the uphill 

direction if (12) is negative. We also take into 

account nonlinear CG directions of the kind  
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With defined from (8). Several  

lternatives for the CG parameter γ exist (see, e.g., 

[6]), and we consider the seven variants listed in 

Table 1. We employ separate updates for the 

Variables  

is  

 

determined by using  

 
 

and 

 
 

These two sets of choices are made based on whether 

we are updating in S (minimizing) or in Sc 

(maximizing). 

 

 Numerical Experiments with HIO 

Variants 

 
We now examine the effectiveness of the methods 

escribed in Sec. 2 in terms of their robustness for 

solving the low-dimensional problem whose exit 

wave  

 
 and diffraction pattern 

 
 + are shown in Figs. 4a and 4b, respectively. The 

exit wave is real-valued and consists of three pixels,  

 

 
 

 arranged in an upside-down-L shape. The remaining 

pixels are zero, and the correct support  

 

 
 

 
 

Table 1: CG parameter expressions for the algorithms 

considered .we define  

 

 
and the inner product 

 
 

where e is a standard vector consisting only of ones.   

For the sake of illustration, we will pretend that rc is 

already known; this will leave us with a problem that 

has 255 complex variable dimensions, with the only 

two nonzero values being 

 
a scenario that was conceived after reading [7], which 

had a comparable synthetic dilemma. Because of this 

dilemma, we are able to see the solution in a 

subspace that only has two dimensions.

 
 

reduces to the the modulus objective function  

 

     
depending on the values of ra and rb; see Fig. 4c. The 

input exit wave (with (ra) = 0.05 and (rb) = 0.8) 

corresponds to the global minimum labeled mG of 

this measure. Due to the fact that phase retrieval is 

often insensitive to global phase changes in the exit 

wave (i.e.,  

 
 

for a fixed 0 R phase difference. At the m1 minimum, 

the input exit wave ((ra) = 0.05 and (rb) = 0.8) 
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exhibits a negative phase shift of 0 =. Since the value 

of (rc) is known, however, such worldwide phase 

shifts are not comparable in our issue. Because of 

symmetry in the Fourier transform, the non-global 

minima denoted by the labels m2 and m3 appear 

when is rotated by 180 degrees. Minimum m2 

corresponds to a 180-degree rotation of the exit wave, 

and minimum m3 corresponds to a 180-degree 

rotation of the exit wave. Knowing the value of 

breaks the symmetry of the Fourier transform, 

making the m2 and m3 minima non-global in the 

same way that m1 is.(rc). Based on this issue 

formulation, we offer a way of representing the exit 

wave retrieved as a function of the initial conditions 

of the process ((0)(ra), (0)(rb)). Starting from the box 

[1.5, 1] with increments of 0.15, we evaluate 441 

initial values ((0)(ra), (0)(rb))..5]2. From this chosen 

initial point, we next check to see which of the 2 M 

minima (mG, m1, m2, or m3) in the two-dimensional 

space ((ra), (rb)) the technique converges to. Fig. 4d 

depicts such an illustration for the ER technique from 

(4). The ER approach is projected steepest descent; 

therefore we anticipate returning to the inima that is 

geographically closest to the origin. The derived 

minimum is highlighted in green at the origin in Fig. 

4d, confirming the validity of this finding. With 

careful attention paid to maintaining constant 

experimental circumstances, we do these 441 runs 

again using an implementation of each of the 

provided techniques. For our initial (0), everything is 

set to zero except for the predetermined values for ra 

and rb and the constant rc. Each of the new variations 

updates (1) in the same way as in Sec. 2.1, but they 

start with different beginning search directions: d(0) s 

= (0) s and d(0) s = (0) s. (11). To determine the next 

set of search directions d, we apply the L-BFGS or 

CG update to calculate L((k)).(k). After this revision 

is complete, we'll find the optimum (k, k) and revise 

k+1. After computing d(k) at each iteration, we check 

the sign on the directional derivatives in S and Sc by 

computing Re[_ r[ (k) _ d(k)](r)]; if we have a 

positive directional derivative when updating in S 

(going uphill when we should be going down) or a 

negative directional derivative when updating in Sc 

(going downhill when we should be going up), we 

reset the offending update to be the standard HIO 

update Only five rounds of the saddle-point 

optimization method are permitted for identifying 

optimum (k, k). (10). Using the optimum (, ) and 

search directions inside and outside the support 

provided in (8), we see in Fig. 4e that the HIO 

approach from (9) can escape the local minima m2 

and m3, but it is vulnerable to stagnation in the 

nonglobal minimum m1. About 75% of the time, out 

of a total of 441 possible initializations, HIO with 

optimum (, ) can locate the global minimum mG. 

Results for illustrative combinations of CG and L-

BFGS within and outside the support with (, ) are 

shown in Fig. 4f-i. Some combinations of CG search 

directions and DY update (Table 1) within the 

support and FR update (Table 1) outside the support 

are obvious, as shown in Fig. 4f.  

 

 
 

Figure 4: (a) The exit wave ρ(r) ∈ R16×16 used. It is 

assumed that the bottom pixel (rc) is known but the 

top two pixels (ra, rb) are not. The diffraction pattern 

for the exit wave in (b) (a). This section demonstrates 

how to calculate the modulus objective function 2 

M() = M 2 F using brute force, given that there are 

only two unknowns ((ra), (rb)). (d) Attempting to 

solve the phase issue by using the local minimizer ER 

(projected steepest descent); depending on the initial 

condition, we will arrive at the nearest of the four 

minima mG, m1, m2, and m3. Saddle-point 

optimization is used to converge to these minima, 

yielding the best (, ) and (e) canonical HIO 

directions. (8).  Using (f) Dai-Yuan in S and (g) 

Fletcher-Reeves in Sc are two examples of when CG 

update paths lead to a poorer result. Hager-Zhang in 

S and Polak Ribi'ere in Sc significantly enhance the 

outcome in (e). (i) We are able to locate mG from 

practically any initial location (99% success rate) by 

using L-BFGS in S and Hestenes-Steifel in Sc.  
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Using combinations of the standard HIO directions 

(Figure 5), the CG direction updates (Table 1), and 

the L-BFGS direction updates (Figure 5), we can see 

what percentage of initial points had their global 

inimum mG regained. (Algorithm 1). (a) Using the 

optimum (, ) in conjunction with direction updates 

outside the support, as opposed to using regular HIO 

direction updates from (9). Comparison of Fletcher-

Reeves (FR), Polak-Ribi'ere (PR), Hestenes-Steifel 

(HS), Liu-Storey (LS), Dai-Yuan (DY), Conjugate 

Descent (CD), Hager-Zhang (HZ), and L-BFGS (i) 

direction updates within the support and outside the 

support. The red dotted line represents the proportion 

of times the global minimum was obtained when 

standard HIO was used inside and outside of the 

support in addition to the optimum (, ). There are 

major drawbacks to CG updates both within and 

outside the support. With the LS update within the 

support and the DY update outside the support, as 

shown in Fig. 4g, the negative impacts of using the 

CG update parameters are mitigated compared to Fig. 

4f. Using the L-BFGS direction update from (1) 

inside the support and the HS update from Table 1 

outside the support, as shown in Fig. 4h, and the HZ 

update inside the support and the PR update outside 

the support, as shown in Fig. 4i, are two examples of 

CG and L-BFGS update combinations that 

significantly improve the algorithm's beneficial 

ability to converge to the global solution. Results for 

the 81 versions generated by coupling various 

methods for both internal and external updates are 

summarized in Fig. 5. The charts reveal what 

percentage of the interval's 441 beginning locations 

provide the global minimum mG. These findings 

allow us to evaluate whether or not combining L-

BFGS with CG direction updates in S and Sc yields 

more stable performance. When compared to the 

typical HIO update in Fig. 5a, the CG approaches of 

PR, LS, and DY in Figs. 5c, e, and f, respectively, 

seem to exhibit comparable to slightly poorer 

behavior. When applied to S, the CG technique of FR 

in Fig. 5b seems to have solely negative impacts on 

convergence to mG, and when used to Sc, it appears 

to have negative effects in general. As can be shown 

in Fig. 5g, the CG technique of CD produces negative 

consequences in S but no real impact in Sc. All three 

CG techniques shown in Fig. 5d–5i—the HZ and HS 

approaches shown in Fig. 5h and the L-BFGS 

technique shown in Fig. 5i—have positive outcomes. 

Some of these variations, when started from almost 

any of the 441 possible sites, converge to the global 

minimum. 

 

Outlook 

 
Using nonlinear conjugate gradient and limited-

memory quasi-Newton updates with an optimum 

weighting of these updates, we have investigated the 

behavior of a well-liked phase retrieval lgorithm, 

Fienup's HIO, while updating an exit wave both 

within and outside the support. By analyzing a low-

dimensional, synthetic issue, we were able to assess 

the approaches' resilience and see how these 

generalized updates might either aid or hinder 

convergence to an optimum solution. According to 

our findings, an algorithm's capability to recover the 

specified exit wave is greatly enhanced by using a 

mix of CG and L-BFGS updates. We have also 

shown that some combinations are not resilient and 

should be avoided. 

Experimenters that use HIO often employ several 

initial speculations for the exit wave, perform 

multiple independent trials, and then compare the 

recovered exit waves. The resulting solutions are 

almost always novel, and the determination of what 

constitutes a "good" solution is frequently left to 

qualitative rather than quantitative measures. We 

expect that experimentalists' confidence in reducing 

the number of beginning points evaluated will grow 

upon applying the generalized modifications 

described here. 
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